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In the event in which a quantum mechanical particle can pass from
an initial state to a final state along two possible paths, the duality
principle states that “the simultaneous observation of wave and
particle behavior is prohibited” [Scully MO, Englert B-G, Walther H
(1991) Nature 351:111–116]. Whereas wave behavior is associated
with the observation of interference fringes, particle behavior
generally corresponds to the acquisition of which-path information
by means of coupling the paths to a measuring device or part of
their environment. In this paper, we show how the consequences of
duality change when allowing for biased sampling, that is, postse-
lected measurements on specific degrees of freedom of the environ-
ment of the two-path state. Our work gives insight into a possible
mechanism for obtaining simultaneous high which-path informa-
tion and high-visibility fringes in a single experiment. Further, our
results introduce previously unidentified avenues for experimental
tests of duality.

wave-particle complementarity | double-slit experiment | decoherence

In his famous analysis of the two-slit experiment, Bohr arrived
at the conclusion that one cannot obtain both complete which-

way information and interference effects in a single experimental
configuration (1). Since then, numerous studies have reinforced
and refined Bohr’s result (2–7). Further, the duality principle was
confirmed by experimental evidence with photons (8) and massive
particles such as neutrons (3) and atoms (9). Having passed every
test to date, duality has indubitably become a solid and universal
principle of quantum mechanics.
Recently, however, Menzel et al. reported a surprising result

in the context of the duality principle (10, 11). They implemented
Young’s two-slit experiment with photons entangled in position
and momentum generated through spontaneous parametric down-
conversion (SPDC) and measured both an interference pattern
with high visibility and high which-way information in a single
experimental configuration. Motivated by this unexpected result,
we analyze duality from a “fair sampling” perspective.
The concept of fair sampling has received much attention in

the context of tests of the Bell inequalities and nonlocality (12–14).
To rule out local theories completely, one should avoid any as-
sumption, including the fair-sampling assumption, which states that
the set of measurement results is representative of the entire en-
semble under study. To achieve freedom from this assumption one
should make sure that the detection efficiency be equal for all of the
states in the ensemble and that the overall detection efficiency be
above a particular threshold (14), which depends on the type of Bell
inequality. Fair sampling also implies that all measurement settings
be chosen without bias. In other words, all relevant subsets of an
ensemble must be sampled with equal probability. However,
the result of a test of fundamental quantum mechanics per-
formed with biased sampling can still bear meaning if all of the
properties of the measurement settings are taken into account.
In this work, we derive a tight relation between which-alternative

knowledge and average visibility of the corresponding interference
pattern in the presence of an environment, an improvement on the

bound of the known inequalities. We then show how biased
sampling can cause an apparent violation of the duality principle.
We finally study the effect of biased sampling on actual tests of
the duality principle by applying our duality relation to a model
that captures the essence of the work of Menzel et al. (10, 11).

The Duality Relations
A duality relation bounds the visibility of an interference pattern
and the corresponding available which-alternative information
in an interferometer. Young’s two-slit experiment is one of many
ways to produce the experimental conditions in which an inter-
ference pattern and which-way knowledge can be obtained. Here,
we restrict ourselves to a two-alternative system, where the alter-
natives can correspond to any degree of freedom: the arms of an
interferometer, two slits, orthogonal polarizations, and two orbital
angular momentum states, to give a few examples. Without speci-
fying any specific degree of freedom, we consider a pure normalized
two-alternative quantum state of the form jψ〉 = λ1j1〉 + λ2j2〉, where
λ1 and λ2 are the complex amplitudes of alternatives 1 and 2.
There are two distinct ways of gaining which-alternative in-

formation: by prediction and by “retrodiction,” an educated guess
about the outcome of an event that occurred in the past. We re-
view the former and then derive a previously unidentified duality
relation for the latter. One can predict, although not necessarily
with certainty of being correct, the outcome of a which-alternative
measurement if a state is prepared such that a particular alter-
native is more likely than the other. Greenberger and Yasin, in
ref. 3, quantify this fraction with the positive difference between

the probabilities of observing the alternatives, P =
���jλ1j2 − jλ2j2

���,
Significance

In 2012, Menzel et al. reported on the results of a fundamental
experiment raising questions regarding the simultaneous ob-
servation of wave-like and particle-like properties in a given
quantum system. Whereas the general applicability of the du-
ality principle to entangled subsystems is an open question, we
bring the current understanding of the duality principle a step
forward by theoretically deriving the strongest relations be-
tween the visibility of an interference pattern and the which-
way information in a two-way interferometer such as Young’s
double slit. This formalism successfully describes tests of dual-
ity where postselection on a subset of the interference pattern
is applied. Our analysis even reconciles the surprising results of
Menzel et al. with the duality principle in its standard form.

Author contributions: E.B., J.L., and R.W.B. designed research; E.B. and J.L. performed
research; E.B. and F.M.M. contributed new reagents/analytic tools; E.B. analyzed data;
and E.B., J.L., F.M.M., G.L., and R.W.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: eliot.bolduc@gmail.com.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1400106111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1400106111 PNAS Early Edition | 1 of 5

PH
YS

IC
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1400106111&domain=pdf&date_stamp=2014-08-07
mailto:eliot.bolduc@gmail.com
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400106111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400106111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1400106111


a quantity now known as predictability. It corresponds to one’s
ability to predict the outcome of a which-alternative measure-
ment in the basis {j1〉, j2〉}. The fact that only one outcome is
possible for any measurement is usually interpreted as particle-
like behavior. The complementary quantity that brings to light
the wave-like behavior of the quantum state is the contrast, or
visibility, of the interference pattern. The visibility is obtained by
projecting jψ〉 onto the superposition state ðj1i+ eıϕj2iÞ= ffiffiffi

2
p

,
where ϕ is a phase that is scanned to produce the interference
pattern. The visibility of the resulting interference pattern is
given by V = 2jλ1λ2j. For a pure two-alternative state, we have the
equality

P2 +V2 = 1; [1]

as in ref. 3. In the presence of noise or a statistical mixture of two
alternatives, the coherence is reduced and the above relation
becomes an inequality: P2 +V2 ≤ 1.
The presence of decoherence can be modeled very effectively

by considering an auxiliary system (5), often called the environ-
ment (6), in addition to the two-alternative system. If the two-
alternative system is coupled to an environment, the latter may
carry information about the former, and the amount of which-
alternative information carried by the environment depends on
the strength of the coupling. This concept is concisely explained
through an example. Notably, Schwindt et al. have experimentally
coupled each path of a Mach–Zehnder interferometer to arbitrary
polarization states, making the which-way information accessible
through a measurement of the polarization (8). In this experiment,
the arms of theMach–Zehnder interferometer played the role of the
two alternatives and the polarization degree of freedom played the
role of the auxiliary system. If polarizations of the light in the two
paths are orthogonal, a measurement of the polarization of a photon
at the output of the interferometer yields complete which-alternative
information by retrodiction. The term retrodiction refers to the fact
that the measurement outcome, which is obtained after a photon
traversed the interferometer, contains the relevant information.Note
that for each possible outcome of a measurement on the auxiliary
system there corresponds a conditional state of the two-alternative
system that will display a particular predictability and a particular
visibility; see figure 1 of ref. 7 for a pictorial description.
In an arbitrary basis {jai〉} of dimension D for the auxiliary

system, the composite state is written jΨi=PD
i=1αijψ i; aii, where

the complex amplitudes αi are normalized ðPijαij2 = 1Þ and jψ i〉 =
λ1,ij1〉 + λ2,ij2〉 are the conditional states. The which-alternative
knowledge associated with the composite system is given by the
statistical average of the predictabilities, after sorting the auxiliary
states jai〉: P =

P
ijαij2Pi, where jαij2 is the probability of occur-

rence of the ith auxiliary state and Pi is the predictability associ-
ated with this same auxiliary state jai〉. Because which-alternative
knowledge generally depends on the basis chosen to sort the states
of the environment, in ref. 7, this quantity P is denoted by KðOEÞ,
where OE specifies the basis in question. Similarly, the average
visibility V is written VQEðOEÞ in ref. 7.
The quantities P2 =

P
ijαij2P2

i and V2 =
P

ijαij2V2
i sum to unity,

in virtue of Eq. 1,

P2 +V2 = 1: [2]

In the case where the auxiliary system is parameterized by a con-
tinuous variable, the sums are replaced by integrals.
To find an equality for the physically relevant quantities, the

which-alternative knowledge and the average visibility, we use
the variances of each distribution: σ2P =

PD
i=1jαij2ðPi −PÞ2 and σ2V =PD

i=1jαij2ðV i −VÞ2. From Eq. 2 and the identities σ2P =P2 −P2 and

σ2V =V2 −V2
, it follows that

P2
+V2

= 1− σ2P − σ2V : [3]

Because predictability and visibility are bounded between 0 and 1,
each variance can take a maximum value of 1/4. The right-hand side
(RHS) of Eq. 3 is thus inherently greater than or equal to 1/2. In
the presence of noise or uncontrolled coupling to the environ-
ment, the equality becomes an inequality, P2

+V2 ≤ 1− σ2P − σ2V ,
where the RHS bounds the left-hand side (LHS) in the tightest
way possible. The above bound is consistent with the inequality
KðOEÞ2 +V ðQEÞðOEÞ2 ≤ 1 from ref. 7.
Eq. 3 holds only when all states of the environment {jai〉} are

sampled with equal probability, that is, under the fair-sampling
assumption. Because the environment is composed of D states,
the sampling probability for any state jai〉 should be 1/D. When
this no longer holds true, the statistics do not reflect the state at
hand and the RHS of Eq. 3 no longer bounds the LHS. In par-
ticular, this occurs when selecting only a subset of the auxiliary
system while rejecting the rest. For instance, one could measure
only the subset of the environment corresponding to the highest
predictability Pmax and also only the one corresponding to the
highest visibility Vmax. In general, these subsets are different
states of the environment, jaj〉 and jak〉 with j ≠ k. For nonzero
variances, the maximum value in each distribution is greater than
its respective average value: Pmax >P and Vmax >V. Because the
quantity ðP2

max +V2
maxÞ can in principle approach 2, it is possible

to observe both high predictability and high visibility in a single
experiment. This can appear to be a violation of the duality prin-
ciple, but it is simply a consequence of the different samplings in the
measurements of which-alternative information and visibility.

An Example of an Apparent Violation of Duality
Through a model inspired by the work of Menzel et al. (10, 11), we
show the details of how to achieve an apparent violation of duality.
Fig. 1 illustrates the precise experiment that we model. We start
from a two-photon state composed of signal and idler photons
generated through spontaneous parametric down-conversion. A
measurement of the idler photon heralds the presence of the signal
photon, which traverses a two-slit mask. While the measurement of
the position of the idler photons provides which-slit information, the

type I 

50/50

rs,y
rs,x

ri,y

ri,x

ps,y
ps,xT

B
SPD

MMFT
B

Fig. 1. A model that captures the essence of the experiment of Menzel
et al. (10, 11). Photon pairs entangled in position and momentum are gen-
erated through degenerate SPDC with a type I crystal and a wide Gaussian
pump mode. The signal and idler photons are separated by a 50/50 beam
splitter. On the path of the signal photon, the plane of the crystal is imaged
with unit magnification to the plane of a two-slit mask made of slit T at rs,y =
d/2 and slit B at rs,y = −d/2. The signal photon traverses the mask, and the
idler photon is collected by an optical fiber (MMF), whose input facet is in
the image plane of the crystal and centered at ri,y = d/2 and ri,x = 0. Through
position correlations, we gain which-slit information of the signal photon
upon detection of the idler photon. We collect the signal photons in the far
field of the mask with a scanning point detector (SPD). All measurements are
performed in coincidence, such that the interference pattern of the signal
photons is conditioned on the detection of idler photons. In a real experi-
ment, interference filters would be placed before the detectors to ensure
degenerate SPDC.
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heralded signal photons build an interference pattern in the far
field of the mask. We give the mathematical details of our model
in Materials and Methods, where we calculate the quantities
appearing in Eq. 3 for a given set of experimental parameters.
The most important result is that the full 2D interference

pattern is not uniform. The visibility of the fringes changes as
a function of one of the transverse degrees of freedom. In some
cases, the maximum visibility significantly surpasses the mean
visibility of the full distribution, and this is the requirement to
clearly observe an apparent violation of duality.

Results of Our Model. Because of momentum conservation, two
photons generated through degenerate SPDC exit the source in
opposite transverse directions, ultimately forming a Gaussian-
like or a ring-shaped distribution in the far field of the crystal,
depending on the value of the phase mismatch parameter φ. In
practice this parameter can be adjusted through the angle of the
crystal or its temperature; the collinear photon regime resulting
in a Gaussian-like far-field distribution corresponds to φ = 0 rad.
Fig. 2 shows the interference patterns formed by the heralded
signal photons for a set of phase mismatch parameters. The details
of the calculation are shown inMaterials and Methods; the notation
~PW ðpsj fiÞ is from this section and should read “two-dimensional
probability density of the signal photon in the far field of the two-
slit mask conditioned on the idler photon being coupled to the
multimode fiber”; the quantity is not normalized in Fig. 2.
The fact that a ring is not a separable function in its two trans-

verse components plays a key role in our demonstration. For φ = 0
rad, as in Fig. 2A, the mode function takes a Gaussian-like form.
Because a 2D Gaussian distribution is separable, the Gaussian-like
mode function does not allow the visibility of the fringes to vary
significantly as a function of ps,x, the horizontal component of the
signal photon wavevector that plays the role of a sorted environ-
ment. Fig. 2 B and C shows that the ring opens up as φ becomes
more negative, thus allowing for greater variations of the visibility
as a function of ps,x. The highest-visibility fringes appear where the
initial transverse momentum spread Δps,y is narrowest. The

maximum visibility is highlighted by dashed lines near position ps,x
= 0 in Fig. 2C. Further, Fig. 2D shows the impact of using a Her-
mite-Gauss 01 (HG01) pump mode on the interference pattern.
Given a constant phase mismatch, the visibility of the interference
pattern is lower for the HG01 pump mode because of the charac-
teristic intensity dip of such a mode. Upon detection of an idler
photon on the top slit, the conditioned mode function of the signal
photon vanishes at the position of the bottom slit because of this
intensity dip in the HG01 pump mode. As a consequence, the use of
an HG01 pump mode increases which-way information at the ex-
pense of a lower visibility of the interference pattern. Refs. 10 and
11 analyze the role that the HG01 pump mode has in this particular
test of complementarity. Specifically, they consider correlations and
fringe visibility arising from radiation generated by different sets of
atoms inside a nonlinear crystal. Although counterintuitive, they
show that the combination of the HG01 pump mode and the ra-
diation pattern can lead to high-predictability and high-visibility
measurements. In contrast, our alternative and independent ex-
planation does not require the use of an HG01 pump mode.
To calculate the which-slit information, we compute the dis-

tribution issued from the single-slit mask of the top slit and the
distribution issued from the single-slit mask of the bottom slit.
Again, these distributions are conditioned on the detection of an
idler photon incident on the top slit. We explain the complete
theoretical procedure in Materials and Methods and illustrate the
probability distributions issued from the single slits in Details of
Our Numerical Calculations. The predictability P is given by the
absolute value of the difference between the distribution obtained
by blocking the top slit and that obtained by blocking the bottom
slit. Fig. 3 shows the probability density jαij2 of finding a signal
photon at ps, x, the predictability P, and the visibility V as
a function of the environment degree of freedom, ps,x. For the case
of a Gaussian pump (Fig. 3A), the relevant parameters amount to
fP = 0:816;  V = 0:331;  Vmax = 0:982;  σ2P = 0:077;  σ2V = 0:148g. For
the case of an HG01 pump mode (Fig. 3B), the quantities are
fP = 0:974;V = 0:1538;Vmax = 0:477; σ2P = 0:0015; σ2V = 0:0253g.
In the two cases, Eq. 3 is verified. However, if we calculate what
we call the “biased sampling quantity” B=P2

+V2
max, we find

a value of B00 = 1:63 in the case of a Gaussian pump mode and
B01 = 1:18 in the case of an HG01 pump mode. In both cases, the
biased sampling quantity is higher than the ultimate limit of 1 that
is normally allowed by duality. Although this result is not a viola-
tion of duality, it provides insight into the possibility to record
high-visibility fringes while the average predictability is close to
unity. A small subset of the photons produces high-visibility
fringes, but for this particular subset, however, the predictability is
lower than the average predictability of the whole set.

Discussion
The visibility of the interference pattern can be strongly depen-
dent on the state of the degree of freedom of the environment.
This is the case in the experiment of Menzel et al. (10, 11), who
used entangled particles to perform an elegant test of comple-
mentarity. However, entanglement is not a requirement for testing
our Eq. 3. In fact, one could produce similar results without
multiparticle entanglement provided that the input mode func-
tion is not separable in its horizontal and vertical degrees of
freedom. This is closely related to the ongoing discussion on
nonseparable mode functions (15, 16).
As a result of this apparent violation one might raise the question

of whether this implies a violation of the maximum speed for in-
formation transfer being the speed of light. The answer is that it
does not and it can be justified in general terms. Our current un-
derstanding of quantum physics implies that any measurement on
a subsystem that is part of a larger system is perfectly described
by the reduced density matrix of the subsystem, which one obtains
by tracing over the remaining part of the total quantum system. In
the case of entanglement between the subsystem and the remainder

A B

C D

Fig. 2. Conditional interference patterns. A–D correspond to various phase
mismatch parameters (φ = {0, −10, −19} rad) and two different pump modes
(HG00 and HG01). The dashed lines in C indicate the state of the environment
ps,x = 0 corresponding to the highest visibility, which leads to an apparent
violation of Eq. 3 when postselected. Whereas the number of fringes is odd
on one side of the ring for an HG00 pump (B and C), this number is even for
the HG01 pump mode (D).

Bolduc et al. PNAS Early Edition | 3 of 5

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400106111/-/DCSupplemental/pnas.201400106SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1400106111/-/DCSupplemental/pnas.201400106SI.pdf?targetid=nameddest=STXT


this unavoidably leads to a mixed-state density matrix. This implies
that there can be no such entanglement if the measurement shows
the subsystem to be in a pure quantum state. Within this constraint,
the measurements on the subsystem and on the remaining part
can of course be correlated, but this information is not accessible
by looking at only one subsystem. This is essentially the message of
the no-signaling theorem (17): It is impossible to detect whether
a measurement has been performed on one of two entangled sub-
systems by looking exclusively at the other subsystem. All experi-
ments so far comply with this interpretation. Nevertheless it is
important to check such predictions again and again when novel
experimental techniques become available.

Conclusions
We have derived the tightest possible relation, Eq. 3, between
the average predictability and the average visibility of a two-
alternative system in the presence of an environment. This duality
relation proved useful in the analysis of an apparent violation of
the duality principle. The selection of one particular subset of the
environment and a high degree of nonseparability between the
main system and the environment are key to understanding this
apparent violation. According to our analysis, the duality principle
in its standard form is safe and sound, but our duality relation
remains to be thoroughly tested.

Materials and Methods
Details of the Model of the Two-Photon Experiment. We start by using the
known theory of SPDC, which provides an analytic solution for the two-

photon mode function in wavevector space Ψ(ps, pi), to compute the mode
function Ψ(rs, ri) in the image plane of the source (18–22). We describe our
approach to computing Ψ(rs, ri) in the first section of SI Text.

In our model, we use a two-slit mask with a slit separation d in the image
plane of the output facet of the crystal on the signal photon side. Upon
measurement of the idler photon position, the correlations allow one to
gain knowledge about which slit the signal photon traverses while measuring
the interference pattern in the far field of the two-slit mask. We model the
mask with the transmission function W(rs,y) = T(rs,y) + B(rs,y), where T and B
stand for the “top” and “bottom” slits and correspond to rectangle functions
of width Δ at positions d/2 and −d/2, respectively. We chose the letterW for the
two-slit mask because it looks like what it represents: two slits with light dif-
fracting out. The unnormalized two-photon mode function after one of the
threemasks is given byΨS(rs, ri) =Ψ(rs, ri)S(rs,y), where S can be replaced byW, T,
or B. The single-slit amplitudes ΨT(rs, ri) and ΨB(rs, ri) are needed in the thor-
ough analysis of the test of the duality principle and are physically obtainable
by blocking the bottom slit or the top slit, respectively. As we are interested in
the joint probability of the signal photon being detected in the far field of the
mask and the idler photon in the near field of the crystal, we perform a Fourier
transform on the signal photon only: ~Ψ Sðps,riÞ= ð2πÞ−1 R dr ΨSðr,riÞeır·ps .

The idler photon is detected with a multimode fiber (MMF) of width wf at
position (ri,x = 0, ri,y = d/2). The mode of this fiber is modeled by a Gaussian
function:

fðriÞ= exp

(
−
h
r2i,x +

�
ri,y −d=2

�2i
�
2w2

f

�
)
: [4]

Upon detection of an idler photon, the conditional distributions of the signal
photon in coordinate space and wavevector space are respectively written

PSðrsjfiÞ=NP

Z
drijΨSðrs,riÞfiðriÞj2 [5]

and

~PSðpsjfiÞ=NP

Z
dri

�� ~Ψ Sðps,riÞfiðriÞ
��2, [6]

where the normalization constant is given by

N−1
P =

ZZ
drsdrijΨW ðrs,riÞfiðriÞj2: [7]

We find Eqs. 5 and 6 through conditional probabilities. For instance, in the
near field of the two-slit mask, the conditioned signal photon distribution is
given by PS(rsjfi) = PS(rs,fi)/PS(fi), where PSðfiÞ=N−1

P and PS(rs,fi) is equal to the
remaining integral in Eq. 5.

In view of the duality relations, the probability distribution ~PW ðpsjfiÞ is
composed of one main degree of freedom and one that belongs to the
environment: the vertical and horizontal directions, respectively. In general,
the visibility of the interference pattern depends on the degree of freedom
of the environment and can thus vary as a function of ps,x.

We chose to calculate the average predictability in wavevector space, which
allows us to retrieve the which-alternative knowledge in the same basis as the
visibility.We retrieve ~PT ðpsjfiÞ and ~PBðpsjfiÞ by blocking slitBor slit T, respectively.
We then integrate the distributions in wavevector space over themain degree of

freedom, py, and obtain the marginal probability distributions jαj2T ðps,xÞ=R
dps,y

~PT ðps,x ,ps,y
��fiÞ and jαj2Bðps,xÞ=

R
dps,y

~PBðps,x ,ps,y
��fiÞ. For brevity, we

henceforth omit writing the argument ps,x. The marginal signal probability dis-

tribution for the two slits simultaneously in the same basis is jαj2W = jαj2T + jαj2B;
note that jαj2W is denoted jαij2 in themain text. Predictability andvisibility canboth

be expressed as a function ofps,x:P =
���jαj2T − jαj2B

���.jαj2W andV = 2jαTαBj=jαj2W . The
average predictability and average visibility are respectively given by

P =
Z

dps,x

���jαj2T − jαj2B
��� [8]

and

V =
Z

dps,x2jαTαBj: [9]

Interestingly, in all of the particular cases that we consider, the quantity jαj2T − jαj2B
is always positive because it is always more probable that two photons of a pair
go through the same slit rather than opposite slits. Consequently, the
average predictability measured without sorting the states of the environment,

A

B

Fig. 3. (A and B) Plots of the distributions required to calculate the quan-
tities in Eq. 3. The horizontal axis corresponds to the sorted environment. At
all values of ps,x, the predictability (red) and the visibility (green) satisfy the
equation P2 +V2 = 1. The marginal probability density jαij2 (blue) peaks
where the visibility is lowest, thus making the maximum visibility Vmax sig-
nificantly higher than the average visibility. Further, the predictability is
clearly enhanced by the use of an HG01 pump mode (B) compared with the
case of an HG00 pump mode (A). We modified the scale of jαij2(ps,x) to fit the
probability density on the same graph as the two other curves.
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as in refs. 10 and 11, is identical to the average predictability measured after
sorting the states of the environment, as in the calculation presented here.

The last quantities left to find are the following variances:

σ2P =
Z

dps,x jαj2W
�P −P�2 [10]

and

σ2V =
Z

dps,x jαj2W
�V −V�2: [11]

Using Eqs. 4–11 and the SPDC mode function, we check that Eq. 3 is satisfied
by means of a numerical example. In our model, the pump spatial transverse

mode does not play a key role and need not be of any special kind. We thus
consider a plane wave, which is a very good approximation to a collimated
Gaussian beam at the crystal in that the differences in the results are neg-
ligible. For the numerical calculations, the set of parameters that we use is
{φ = −19 rad, L = 2 mm, d = 70 μm, Δ = d/4 μm, wf = 10 μm, n = 1.65, λp =
405 nm}, where L is the crystal length, n is the crystal average index, and λp is
the wavelength of the pump in vacuum.
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